
VersaLase SDK Instructions

Vortran provides a software development kit (SDK) to VersaLase users, which offers the capability of
developing custom software for communicating with VersaLase modules over USB connections. The SDK
is available in the form of a .NET Framework Assembly, which allows development of custom software in
common languages such as LabView, C# .NET, and Visual Basic .NET. The API requires the VersaUSB.dll
and LibUsbDotNet.dll files. These should be placed in the same directory as the application that accesses
them. The API allows for complete control of all programmable features of the VersaLase. All commands
and queries listed in the VersaLase user manual may be accessed using the provided API. A complete
summary of the API members are listed in the following table.

API Summary:

Name Type Description
VersaHub() Constructor Instantiates the VersaHub object.
InitVersaHub() Method Initializes the VersaLase API.
VersaSend() Method Sends a text command or query string to a VersaLase module.

The first argument is the identifier for the particular VersaLase.
VersaGetReply() Method Gets a reply text string from a VersaLase module. See the user

manual for a complete command summary. If there is no reply
available, this function will return the string “EMPTY”. The time
required for the VersaLase to process a command and return a
reply will vary and may be up to 3 seconds. If the specified laser
is not connected, this function will return the string “ERROR”.

VersaCount Property Returns the number of VersaLase modules that are powered on,
connected by USB, and are available for communication.

OnVersaConnect Event An event fired when a VersaLase is connected to the PC. The
event handler argument ‘moduleID’ provides the identifier for
the laser which has been connected.

OnVersaDisconnect Event An event fired when a VersaLase is disconnected from the PC.
The event argument ‘moduleID’ provides the identifier for the
laser which has been disconnected.

Tips for communicating with multiple VersaLase modules:

Two methods are provided to determine when a VersaLase module has been connected or disconnected
from the PC. One is to retrieve the “VersaCount” property at regular intervals to determine if there has
been a change in the laser count. Another method is to make the application listen for the events
“OnVersaConnect” and “OnVersaDisconnect” which have arguments that supply the identifier, or
moduleID, for the laser that been connected or disconnected.

C# Sample Program

A sample C# program is provided to demonstrate the use of the VersaLase SDK to communicate with up
to four VersaLase modules simultaneously with a terminal-style interface. A screenshot of the sample
program is shown below. The example sends a “prompt=1” command which turns on the command
prompt on the VersaLase (which is turned on by default). Click on the “Send” button to send the
command and then press the “Receive” button to get the reply that will be waiting in the buffer.

In Visual Studio, a reference must first be specified to access the API. This is done by opening a project
and going to the menu: Project -> Add Reference… An object is then instantiated from the VersaHub
class. This will call the VersaHub() constructor method. Then the InitVersaHub () method is called to
establish communications with the VersaLase modules. At this point, any of the listed API methods may
be called to send commands or retrieve replies.

Note: The VersaLase.dll and LibUsbDotNet.dll files usually must be placed in the same directory as the
compiled .exe file. Some development environments will place an assembly .DLL file automatically when
it is referenced.

National Instruments LabView Sample Program

A sample LabView VI program is provided to demonstrate the communication with a VersaLase module
using a typical LabView interface. The sample application allows communication with a VersaLase
module with a moduleID of ‘0’. The source code “vi” is provided to show how the VersaLase .NET
assembly is accessed from LabView, followed by initialization of the API, and then sending and receiving
of a query. Screenshots of the program and source are shown below:

